Rapid measurement of pulse wave velocity via multisite flow displacement.
نویسندگان
چکیده
A MR method is presented for measuring pulse wave velocity (PWV) and its application to assessing stiffness in the human thoracic aorta. This one-dimensional (1D) flow displacement method applies a single RF comb excitation to the vessel, followed by an oscillating frequency encoding gradient, each oscillation providing a 1D projection of the vessel, enabling one to track fluid motion. The currently implemented sequence excites nine slices within a 20-cm length of vessel and has a temporal resolution of 2.03 msec and a total acquisition time of 140 msec. Offline-reconstructed position-versus-time plots show curvilinear flow displacement trajectories corresponding to fluid motion at each of the excitation positions. The PWV can be reliably calculated by curve-fitting these trajectories to a model. In vitro studies using compliant tubes demonstrate no significant difference between results obtained using this method and those directly obtained using pressure transducers. Compared to another MR method previously developed in our laboratory, the proposed method displays improved temporal resolution and enhanced ability to extract PWV from vessels exhibiting low peak flow velocity. Preliminary data suggest that this method is feasible for in vivo application and may provide a more accurate estimation of aortic wave velocity among subjects exhibiting low peak flow velocity, such as the elderly or those with impaired cardiac function.
منابع مشابه
An Optical Measurement System to Measure Velocity and Provide Shock Wave Pressure Diagrams
This paper introduces an optical measurement system for shock wave characteristics. The system works by mountinga metal plate attached to spring mounts against the shock wavefront. This set is sealed and can plot the shock wave pressure diagram by measuring plate's displacement, radiation and changing the reflection of light during shock wave conflict, and converting these optical data to volta...
متن کاملHigh Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple...
متن کاملNumerical Studies of Pulse Wave Propagations along Inhomogeneous and Stented Aortas
Estimating the focal variations in the stiffness of the aortic wall has been found as an effective method for cardiovascular diseases diagnosis. Direct measurement of the wall stiffness noninvasively may not prove readily possible, and therefore the velocity of the pulse wave along the aortic wall has been shown to be an effective surrogate to estimate the wall stiffness. Given that the majorit...
متن کاملMeasurement of Aortic Pressure Wave Velocity by 4D Image Registration
Aortic pulse wave velocity is an important diagnostic measure and has been associated with significant cardiovascular mortality. Our hypothesis is that this parameter can be measured using displacement fields obtained by registration of time-series images. This paper presents a method in which a form of the wave equation is used as a regularization term in the registration process. It is demons...
متن کاملSelf-mixing Interferometry and Its Applications in Noninvasive Pulse Detection
This thesis describes the laser Doppler technique based on a self-mixing effect in a diode laser to noninvasive cardiovascular pulse detection in a human wrist above the radial artery. The main applications of self-mixing interferometry described in this thesis in addition to pulse detection are arterial pulse shape and autonomic regulation measurements. The elastic properties of the arterial w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 52 6 شماره
صفحات -
تاریخ انتشار 2004